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Abstract

Pollutants' particle transport from point sources through flow channels of municipal
rivers have been implicated as a potential spread of the hazardous chemical, biological
and physical pollution. The unsteady characteristic of an oscillatory laminar flow of
water (Newtonian fluid) with uniform distribution of pollutant particles moving in a
river flow channel, has been analytically investigated. The governing equations are
composed of the continuity equations and the Navier-stokes equations. The oscillating
flow is described by setting one side of boundaries to be a periodic function. The
method of analytical expression is presented as an efficient alternative method to the
high-performance computing resources of numerical methods whose complexity,
availability and requirements delimit their usage. The solution is obtained in the form of
a Bessel series. The effects of pollutant particles are described by three parameters: the
mass concentration () of the pollutant particles, their frequency () of flow in river
channel, and the velocity-lagging time () that measures the rate at which the velocity of
the pollutant particles adjusts onto the velocity of the clean water and this depends
upon the size of the individual pollutant particles. At different times within the river
flow channel the velocity profiles, wall shear stress, and flow rate are graphically
represented due to the effects of pollutant parameters () and () and the results
obtained are compared with those of the clean water particles.
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1. Introduction

Municipal wastewater (or sewage) consists mostly of black and gray waters. It is a complex matrix containing inorganic,
biological and organic compounds that can be found either in solution or suspended particles. These particles can be
divided into categories based on their size: colloidal 0.001 – 1m), dissolved (<0.001 m), settleable (<102 m), supra-
colloidal (1 – 102 m) (Dulekgurgen et al., 2006). Most of the soluble part consists mainly of inorganic compounds,
whereas suspended particulate consists of organic material.

Volume 4, Issue 1, April 2024

Received : 13 January 2024

Accepted : 19 March 2024

Published : 05 April 2024

doi: 10.51483/IJPAMR.4.1.2024.99-108

© 2024 Ombaki Richard. This is an open access article under the CC BY license
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Keywords: Pollutant, Colloid, Oscillating flow, Mass concentration, Delayed time,
Frequency, Number density

ISSN: 2789-9160https://doi.org/10.51483/IJPAMR.4.1.2024.99-108

2789-9160/© 2024. Ombaki Richard. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ombaki Richard / Int.J.Pure&App.Math.Res. 4(1) (2024) 99-108

International Journal of Pure and
Applied Mathematics Research
Publisher's Home Page: https://www.svedbergopen.com/

Research Paper Open Access

SvedbergOpen
DISSEMINATION OF KNOWLEDGE

iDiDiD

https://orcid.org/0000-0001-7422-8057


Ombaki Richard / Int.J.Pure&App.Math.Res. 4(1) (2024) 99-108 Page 100 of 108

The suspended particles are termed as pollutant colloids. They arise from a combination of industrial, agricultural
and natural sources of pollution including soils and sands, and micro flora (Amir Hatamkhani and Ali Maridi, 2021;
Moridi et al., 2018).

In this paper, the effects of unsteady phenomena are studied together with suspended pollutant particles and clean
water particles on oscillating flow of water through a stretching river flow channel (Ombaki and Kerongo, 2022). The
river channel is considered to have the geometry of a pipe and hence we consider the basic equations in cylindrical co-
ordinates. Intuitively, a viscous compressible pollutant water bounded by circular tube is executing simple harmonic
oscillations with a frequency  in river channel of radius R = r

0
. The oscillating waterflow columns define particle

trajectories, their transportation and final locations (Kongunan and Pholuang, 2012).

The following assumptions were considered to formulate the mathematical model:

i) The pollutant particles are spherical in shape and are uniformly distributed in the river flow channel.

ii) The pollutant number density N, and therefore the pollutant concentration (), are constant throughout the river
flow channel.

iii) The flow is unsteady (under the assumption of constant pressure gradient).

iv) The proportion 
c

p




 
  
 

 (where, 
c
 and 

p
 are the density of clean water and polluted water, respectively.) is assumed

to be very small so as to neglect the buoyancy force.

In this paper, we investigate the effects of wall shear stress, flow rate and velocity of clean water in the presence of
pollutant particles for varying radial coordinates and for varying time considering the pollutant parameters  and .  By
incorporating the effects of suspended pollutant particles (colloids) transported in clean water (Mojtaba et al., 2016),
the analytical solution of the basic developed model equations are obtained. The analytical solutions are computed
numerically and the results are presented in graphs.

2. Model Development

We assume that the pollutant particles in the polluted water and the clean water particles flow through the symmetric
curve of semi-circular trough of river channel.

Denote: velocity of clean water,  U
c
 = U

c
(x, y, z),

velocity of pollutant water, U
p
 = U

p
(x, y, z).

The flow is considered only in the x-axis. The equation of motion in the river channel is given by

 
* 2 * **

* *
0* 2

1 1c c c
p c

U d U dUdp Kn
U U

dx r drt dr


 
 

        
...(1)

 
*

* *
*

p
c p

U
M K U U

t


 


...(2)

The initial and boundary conditions to solve Equations (1) and (2) are set as

* 1 ,
4c

O

c r
U

L R
 

  
 

...(3)

 **
* *

0 02

sin
0, 0; 1,c

p

tU
at r U U at r

r L

      
   

...(4)

where, p* is pressure gradient (assumed to be constant); 
c
 is kinematic viscosity of the clean water; M is the mass of

a pollutant particles; K is the stokes’ drag coefficient given as K = 6r for spherical particles of radius r; n
0
 is number

of pollutant particles;  is the viscosity of the clean water; and t* is the time of particle flow.



Page 101 of 108Ombaki Richard / Int.J.Pure&App.Math.Res. 4(1) (2024) 99-108

The Equations of motion (3) and (4) are made dimensionless using the following parameterization (Saffman, 1961):

* 2 *
*

2 2
; ; ; ; ; ;c c

O

r x p L t m
Y p t U U l

R L L kL

  
  

     

2 2
* 0 0; ,p p

c c

kn L kn
U U L Q Q


  

 
    

where,

 = delay in mixing process;  = mass concentration of the pollutant particles;

 = frequency in the water flow channel; R = axial radius of the river channel; L = length of the channel.

Substituting the above non-dimensional quantities into Equations of motion (3) and (4) yields

 
22

2 2

1c c c
p c

o

U U Up L
U U

t y R RR R


   
         

...(5)

 c
c p

U
k U U

t



 


...(6)

The non-dimensional initial and boundary conditions are

 21 , 0
4p

c
U t   ...(7)

 0 00, sin 1.c
c

U
at U U t at 




    


...(8)

We consider that the pressure gradient 
p

y





 is constant such that

p
c

y


 
 ...(9)

3. Method of Solution

We observe that the method of separation of variables fails to solve the model Equation (5) because the solution
obtained through this method will not satisfy the set initial condition (7). Therefore, we proceed to find the transient
solutions of Equation (5) by decomposing the velocity regime into unsteady part and steady parts such that

     c cs ctU t U U t      ...(10)

      ,P Ps PtU t U U t      ...(11)

where, U
ct
(, t) and U

pt
(, t) are the transient (unsteady) parts while U

cs
() and U

ps
() are the steady parts of the velocity

regime.

Inserting Equations (10) and (11) in Equations (5) and (6) and separating the steady part, we obtain

2

2

1
0cs csU U

c
 

 
  


...(12)

The set of boundary conditions to solve Equation (12) is

 0 00, 0; sin 1.cs
cs

U
at U U t at 




   


...(13)
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Then the solution of Equation (12) satisfying the first condition in (13) is obtained as

   2
01 sin .

4cs

c
U U t   ...(14)

Again, the transient state of clean water is obtained by solving the unsteady Equations (5) and (6) using Equations
(10) and (11) to obtain

 
2

2

1ct ct ct
pt ct

U U U
U U

t


 
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   
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...(15)

3.1. Solving Equation (15) for the Flow of Clean Water Particles

We adopt the Laplace transforms into Equation (15) such that

       
0

St
ct ct ctV S U t U t e dt  

      ...(16)

       
0

St
pt pt ptV S U t U t e dt  

      ...(17)

where, S is conventionally a Laplace parameter and  is a Laplace transform. V
ct
 and V

pt
 are the Laplace transforms of U

ct

and U
pt
, respectively. The initial and boundary conditions associated with these Laplace transformations are set as:

Initial conditions,

   21 , 0.
4ct

c
V t    ...(18)

Boundary conditions,

   0 00, sin 1.pt
ct

V
at V t U t at  




     


...(19)

Applying Laplace transform to Equation (15) and (6) ad inserting conditions (18) and (19) results to an ordinary
differential equation,

   
2

2
2

1
1 ,

4
ct ct

ct pt

d V dV c
S V V

dtd
  


      ...(20)

   21 1 .
4ct pt

c
V S V

     ...(21)

Eliminating V
pt
 between Equations (20) and (21) generates,

 
2

2
2

1
1 ,

4
ct ct

ct

d V dVD
V

dtd



     ...(22)

where, 
   2 1 1

, .
1 1

S S c S S
D

S S

   
 

   
  

 

To solve Equation (22), we apply Hankel transform of the form

     
1

00ct ct ctV V V J d       ...(23)

where,  0 nJ    is a kernel implying Bessel function of order zero and J
0
(

n
) is the nth root of the Bessel equation of order

zero.
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Applying Equation (23) to solve Equation (22) yields,

 
 

 
  

1 0 0

23 2 2

1

2 1
n n n

ct
nn n

DJ U J
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  
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   
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...(24)

Now we take the inverse Hankel transform on Equation (24) to give

      
 
 

5
00

3 2 2 2
1 1
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 ...(25)

Considering that for clean water  = 0, f = 0, D = c,  = S and substituting these values in Equation (25) results to

    
 
 

5
00

3 3 2 2
1 1

1
2

2 2 1
nn
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          
 ...(26)

The inverse Laplace transform of (26) yields,

     
 
 

22 25
0
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1 1

cos sin1
2
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 ...(27)

Using Equations (14) and (27) in Equations (10) and (11), we obtain the required velocity of clean water in the form,

         
 
 

22 25
02

0 03 3 4
1 1

cos sin1
1 sin 2

4 2 2 1
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  
  

  
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 ...(28)

3.2. Solving Equation (15) for the Flow of Pollutant Colloids

In this case we consider the case when 
ct

L

V
   such that V

ct
 = V

pt
 for disturbance over the length L or larger. Equation

(6) becomes

c
c p

U
U U

t



 


...(29)

Inserting Equation (29) in Equation (5) leads to

2

2

1c c c cU U U Up

t y t


 
    

         

Or, 
2

2

1p c c c
U U U Up

t t y


 
    

         

Or  
2

2

1
1 c c cU U U

t


 
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  
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...(30)

For the fine pollutant particles,  = F. Then,

 
2

2

1
1 c c cU U U

F c
t  

   
      

...(31)
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Choosing U
c
 = U

F
 for the fine pollutant particles gives

 
2

2

1
1 F F FU U U

F c
t  

   
      

...(32)

The initial and boundary conditions to solve Equation (32) are set as:

Initial condition,

   2
01 sin

4F

c
u u t   ...(33)

Boundary conditions,

 0 00, 0; sin 1Fs
Fs

u
at u u t at 




   


...(34)

Decomposing the velocity profile of fine pollutant colloids into unsteady and steady parts we get

2

2

1
0Fs Fsu u

c
 

 
  


...(35)

To solve Equation (35) for steady state, the boundary conditions are

   00, 0; sin 1Fs
Fs

u
at u u t at  




   


...(36)

Solution for Equation (35) projects to

     2
01 sin

4Fs

c
u u t    ...(37)

From Equation (33) the unsteady state is

 
2

2

1
1 Ft Ft Fu u u

F
t  
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  
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...(38)

From Equation (35) the initial and boundary conditions to solve Equation (35) are

       2
01 sin 0; 0 1;

4
Ft

Fs Ft

uc
u u u t at t at   




      


 , 0, 0Ftu t at   ...(39)

The Laplace transform for two variables , t for pollutant water is

     
0

, , ,St
Ft Ft FtU S u t e u t dt  

      ...(40)

Thus,

    
2

2
2

1
1 1 1 0

4
Ft Ft

Ft

u u c
S F U F

 
 

      


...(41)

Again, we solve this equation using Hankel transform of the form

   00
,Ft Ft nU u t J d    


  ...(42)
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Applying Equation (42) in Equation (34) yields

 

 
 

 
1 0 0

2 3 2
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1 1

12
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  
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...(43)

We using the inverse Hankel transform of Equation (43) yields
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  
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5
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1
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
...(44)

The inverse transform of Equation (44) is

         
   

 
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2

2
2 12 25

1 00
3 2 2 2

1 1

1 cos 1 sin 1
, 2

12 1 1

n

n
t

Ft
F n n nn

F
n nn n

F t F t F e Juc
u t e

F JF S




   


 

 
        



  
       
   

    
    

 ...(45)

Summing up Equations (37) and (45) gives the desired velocity of the fine pollutant colloids. Thus,
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3.3. The Mass Flow Rate of Clean Water

Now, to find the quantitative dispersion of pollutant colloids on transport of water in a river channel, we calculate the
mass flow rate and wall shear stress which is the skin friction.

The mass flow rate of clean water is given by
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We integrate Equation (47) to obtain
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3.4. Mass Flow Rate for Pollutant Particles

Also, the mass flow rate of pollutant colloids is
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Integrating Equation (49) yields,
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3.5. Wall Shear Stress

The skin friction (or wall shear stress) for clean water is
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Skin friction for fine pollutant particles is obtained as in Equation (50) below.
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4. Graphical Results

The Figures 1 to 3 shown below were generated in Matlab software using Equations (48), (50) and (52), respectively. In
the Figure 1, axial velocity of particle flow was plotted against axial radius of river channel for both colloidal and clean
water at various flow time, t.

In the Figure 2, variation of flow rate Q with time t for different values of viscosity n = , for F = 0.4 and  = 0.2 was
displayed. In the Figure 3, variation of wall shear stress  with axial position time t for different values of viscosity n =
,  for F = 0.4 and  = 0.2 were also displayed.
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Figure 1: Variation of Axial Velocity U with Radial Position R for Different Values of Time t (for F = 0.4,  = 0.2)

Figure 2: Variation of Flow Rate Q with Time t for Different Values of Viscosity n = m, (for F = 0.4,  = 0.2)
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Figure 3: Variation of Wall Shear Stress t with Axial Position Time t for Different Values of Viscosity n = m, (for F
= 0.4,  = 0.2)
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5. Conclusion

Wall shear stress, flow rate, and velocity have been mathematically presented as the main parameters that influence the
pollutant particle transport through a river flow channel. It has been realized that these parameters depend more on the
frequency and the mass concentration () of the pollutant particles than on the size of these particles. The changes in
the wall shear stress, flow rate and velocity of pollutant particles with varying time t due to the pollutant parameters F,
 and frequency  are computed. The results are depicted in the graphs.
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